3(1^2)-25y^2=2

Simple and best practice solution for 3(1^2)-25y^2=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(1^2)-25y^2=2 equation:



3(1^2)-25y^2=2
We move all terms to the left:
3(1^2)-25y^2-(2)=0
determiningTheFunctionDomain -25y^2-2+31^2=0
We add all the numbers together, and all the variables
-25y^2+959=0
a = -25; b = 0; c = +959;
Δ = b2-4ac
Δ = 02-4·(-25)·959
Δ = 95900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{95900}=\sqrt{100*959}=\sqrt{100}*\sqrt{959}=10\sqrt{959}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{959}}{2*-25}=\frac{0-10\sqrt{959}}{-50} =-\frac{10\sqrt{959}}{-50} =-\frac{\sqrt{959}}{-5} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{959}}{2*-25}=\frac{0+10\sqrt{959}}{-50} =\frac{10\sqrt{959}}{-50} =\frac{\sqrt{959}}{-5} $

See similar equations:

| 3(-1^2)-25y^2=2 | | 9x2º-6x=-1 | | 9x2ª-6x=-1 | | 15x-6=2x+1 | | 3x5ª+2x-89=0 | | 3(y+5)=y+19 | | 2n^2-29n-2040=0 | | 2n^2-29n+2040=0 | | x-0.95x=5.65 | | X*a=a+1 | | 2y^2+50y^2=0 | | 6x-13=11-2x | | (1-x)^59=0.05 | | 2x÷5-1÷2=x÷5 | | 10x-6/7-18-2x/3=5x+19x-76/3 | | 14+2x=43 | | 2^x=1=3^2x-5 | | 8x^2+2+8x=0 | | -4x=48+2x | | 9x/15=8 | | 3+x+81+3x=4x+66+2x+2x | | 7n^2=14n+21 | | 6/x=1.44 | | 3(y+4)=y+20 | | 26=5k+1 | | -30+5x+17=2x+25+x+x | | -30+5x+17=2x+25+x+x | | 5(3)^x+6=31 | | -5x-5x²-7x+8x= | | (X-4)(9-x)+(x+6)2=5x2 | | 7n+2n+6=24 | | 5x−3=x+9 |

Equations solver categories